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an observation in a sample of size j drawn from a normal 
population with zero mean and unit variance is given 
exactly by 

2y~ 
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A comparison of exact [equation (2)] and approximate 
expected magnitudes of the ranked half-normal order 
statistics, for three values of j ,  is given in Table 2. The 
exact moduli, for values of j = 2 [ 1 ]  41, for all values of 

i (to our knowledge, not previously published) are presented 
in Table 3. The normal approximation is satisfactory for 
intermediate values of i (cf. Table 2), but remains in error 
by about 2 % for values of j as high as 400. The extreme 
smallest value has a limiting exact value which is double 
that for the normal approximation, although the absolute 
difference between exact and approximate values is of no 
practical importance for large values of j .  

Complete values of the full- and half-normal order stat- 
istics will appear in Volume 4 of International Tables for 
X-ray Crystallography. 
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Multiple diffraction effects in neutron single-crystal diffractometry. By R. COLELLA*, Department of Materials 
Science and Engineering, Bard Hall, Cornell University, Ithaca, N. Y. 14850 U.S.A. 

(Received 1 February 1971) 

The n-beam dynamical theory of diffraction is applied to multiple neutron diffraction. A computer program 
has been adapted to the neutron case from one originally developed for high energy electron diffraction in 
reflection. The integrated intensities are computed for the two and multibeam cases of the 002 reflection 
and compared with experiment. It is shown that only a negligible fraction of the incident beam satisfies the 
conditions for multiple diffraction. 

The importance of multiple neutron diffraction in the Bragg 
case was recognized early by Moon & Shull (1961) and 
subsequently by Borgonovi & Caglioti (1962). The latter 
authors found remarkable effects in the 002 reflection from 
mosaic crystals such as nickel, aluminum, and pyrite, 
whereas they were not able to observe any appreciable effect 
in relatively perfect crystals such as LiF and NaCI. Since 
multiple diffraction is essentially related to a dynamical in- 
teraction among diffracted beams, the reason for this nega- 
tive result is not clear, and a theoretical evaluation of these 
effects seems worthwhile. 

The appropriate tool for this interpretation is the n-beam 
dynamical theory of diffraction and, for this purpose, a 
computer program originally developed for high energy 
electron diffraction in reflection (Colella, 1971; Colella & 
Menadue, 1971) has been adapted to the neutron case with 
a few minor modifications. 

In Borgonovi & Caglioti's experiment, the crystal was 
oriented for the 002 Bragg reflection and then rotated around 
the [002] normal. The intensity was measured as a function 
of ~0, the azimuthal angle. The divergence of the incident 
beam in the diffraction plane, of the order of several minutes 
of arc (Caglioti & Ricci, 1962), was much higher than the 
Darwin width of the crystal. In this situation, the intensity 
measured by the counter corresponds to the integrated in- 
tensity of the diffraction profile for an co scan. For the sake 
of comparison with Borgonovi & Caglioti's experiment, 

* Present address: Purdue University, Department of Phys- 
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the 002 integrated intensity for an co scan (Bragg case) was 
computed when one or two strong reflections other than 002 
were simultaneously excited. In relation to the nickel 002 
azimuthal plot obtained by Borgonovi & Caglioti, nu- 
merous multibeam rocking curves for LiF and NaC1 single 
crystals were computed in the vicinity of ~0 = 36-37 °, where 
the 002 intensity suffers the most drastic changes.t  The 
results are reported in Table 1. The 002 integrated intensity 

The azimuthal angle ~0=0 corresponds to a [010] axis 
lying in the diffraction plane. 

Table 1. The effects of simultaneous reflections on the 002 
integrated intensity 

The simultaneous reflections are listed in the second column 
from the left. When two simultaneous reflections are involved 
(four-beam case), their hkl indices are indicated by parentheses. 
The maximum and minimum percentage changes of the 002 
integrated intensity are indicated, along with the angular width 
on the azimuthal scale. 12 is the 002 two-beam integrated 
intensity. 

Crystal hkl AI/12 ( x 100) Aq~ (sec) 
LiF T31 - 15 14 

+466 

( 042] + 33 8.3 
040] - 30 

NaC1 i31 - 2.5 3" 1 
+31.4 
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can be either increased or decreased by simultaneous dif- 
fraction, and the extreme values are given in Table 1. For 
every multibeam case, a particular azimuth ~00 is computed 
corresponding to a situation in which one or two reciprocal 
lattice nodes lie on the Ewald sphere. When the actual 
azimuth ~0 differs from (Do by more than A~o/2 as given in 
Table 1, the 002 integrated intensity is practically restored 
to the two-beam value. 

Table 1 shows that these effects are by no means negli- 
gible, especially in the case of the T31. However, the azi- 
muthal width for the ]'31 (14 sec) must be compared with 
the vertical divergence, i.e. perpendicular to the diffraction 
plane, of the incident beam in Borgonovi & Caglioti's ex- 
periment. This vertical divergence amounts to 76 minutes, 
as calculated from a description of the experimental set up 
given by Caglioti & Ricci (1962). It is clear, therefore, that 
only a negligible fraction of the incident beam satisfies the 
conditions for multiple diffraction. The remaining portion 

undergoes two-beam 002 diffraction and is totally collected 
by the counter. The net effect turns out to be of the order 
of 1.7 % which is within the limits of the experimental error. 

Thanks are due to Professor B. W. Batterman and to the 
U.S. Advanced Research Projects Agency for partial sup- 
port of this work. 
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Analytical solution for the X-ray absorption factor for cylinders in two special cases. By C. W. DWIGGINS JR, 
Bartlesville Energy Research Center, Bureau of Mines, U.S. Department of  the Interior, Bartlesville, Oklahoma 74003, 
U.S.A. 

(Received 18 August 1971) 

The equation for the absorption factor at Bragg angles of 0 and 90 ° is integrable, resulting in simple equa- 
tions that are functions of well-known higher transcendental functions. Numerical results are easily obtained, 
and a comparison with those obtained using numerical integration is made. 

For  small-angle scattering studies of cylindrical samples, it 
is useful to calculate the absorption factor at zero Bragg 
angle directly, in a manner that does not require a large 
amount  of computer storage. Also, direct calculations at 
Bragg angles of 0 and 90 ° allow checks to be made on ab- 
sorption factors calculated by numerical integration. 

The general equation for the transmission factor A that 
is the reciprocal of the absorption factor A* is 

1 f, 
A=---~ e x p ( - g t L ) d V ,  (1) 

where V is the sample volume, /t is the linear absorption 
coefficient, and L is the total path length of the X-ray beam 
in the sample. 

After introducing boundary conditions for the sample 
shape, transformation of coordinates, and integration by 
parts, definite integrals, for which solutions are well known, 
were obtained from equation (1) for Bragg angles of 0 and 
90 ° . The equations for the transmission factors for these 
two special cases are" 

A=2[12{z)-L2{z)+(Ii{z)-L~{z})/z-(Zz)/(3~)] ( 0 = 0  °) (2) 

= 2[(lo{z)-Lo{z))-(I~(z}-L~{z})/z], 

A=[l~(Zz}-L~(2z}]/z, (0=90  ° ) (3) 

where z = 2/tR, R is the radius of the cylinder, and Iv and Lv 
are the modified Bessel function and the modified Struve 

function respectively of order v (Erd61yi, Magnus, Ober- 
hettinger & Tricomi, 1953).t 

The numerical values of Iv and Lv can be obtained using 
series solutions only slightly more complicated than those 
for the simple transcendental ftmctions, such as the sine. 
Because series solutions are simple to evaluate on a com- 
puter, it is quite simple to solve for the absorption correc- 
tion directly for the two special cases. 

For  large values of the arguments of the modified Bessel 
and Struve functions, these functions become very large, 

? Proofs of equations (2) and (3) are available from the 
author. 

Table 1. Values of  A* 

0 = 0 ° 0 = 90 ° 
/tR A* % Error~: A* % Error 
0.5 2-300 0.43 2.050 0.01 
1.0 5.091 0.61 3.389 0.04 
1.5 10.75 0.45 4.863 0.15 
2.0 21.44 0.63 6-389 0.17 
2.5 40-10 0.74 7"936 0.30 
3-0 70-12 0.88 9.492 0.40 
4.0 177.0 1.11 12.62 0.66 
5.0 363.0 1.11 15.75 0.97 

Percent error in A* values in International Tables for X-ray 
Crystallography (1959) when compared with A* values given 
in this table. 


